InterviewSolution
Saved Bookmarks
| 1. |
If ‘α’ and ‘β’ are the roots of expression x2 – 12x + 27 = 0, then find the value of 1/β2 – 1/α2.1. 10/812. 8/813. 4/94. 22/27 |
|
Answer» Correct Answer - Option 2 : 8/81 GIVEN: ‘α’ and ‘β’ are the roots of expression x2 – 12x + 27 = 0 FORMULA USED: (α – β)2 = (α + β)2 – 4αβ (α2 – β2) = (α – β)(α + β) CALCULATION: Since ‘α’ and ‘β’ are the roots of expression x2 – 12x + 27 = 0. α + β = -b/a = 12 ---- (1) αβ = c/a = 27 ---- (2) From (1) and (2): (α – β)2 = (α + β)2 – 4αβ ⇒ (α – β)2 = 144 – 108 = 36 ⇒ α – β = 6 Now, 1/β2 – 1/α2 ⇒ (α2 – β2)/α2β2 ⇒ [(α – β)(α + β)]/α2β2 ⇒ [(6 × 12)/272] ⇒ 8/81 ∴ The value of 1/β2 – 1/α2 is 8/81. |
|