InterviewSolution
Saved Bookmarks
| 1. |
If a and b are two positive real numbers such that a + b = 20 and ab = 4, then the value of a3 + b3 is:1. 77602. 2403. 80004. 8240 |
|
Answer» Correct Answer - Option 1 : 7760 Given: a and b are two positive real numbers such that a + b = 20 and ab = 4. We have to find the value of a3 + b3 Formula Used: a3 + b3 = (a + b)3 – 3ab(a + b) Calculation: a3 + b3 = (a + b)3 – 3ab(a + b) ⇒ a3 + b3 = (20)3 – 3 × 4 × 20 [∵ Given a + b = 20 and ab = 4] ⇒ a3 + b3 = 20 × (202 – 12) ⇒ a3 + b3 = 20 × (400 – 12) ⇒ a3 + b3 = 20 × 388 ⇒ a3 + b3 = 7760 ∴ Value of a3 + b3 is 7760 |
|