1.

If a and b are two positive real numbers such that a + b = 20 and ab = 4, then the value of a3 + b3 is:1. 77602. 2403. 80004. 8240

Answer» Correct Answer - Option 1 : 7760

Given:

a and b are two positive real numbers such that a + b = 20 and ab = 4. We have to find the value of a3 + b3

Formula Used:

a3 + b3 = (a + b)3 – 3ab(a + b)

Calculation:

a3 + b3 = (a + b)3 – 3ab(a + b)

⇒ a3 + b3 = (20)3 – 3 × 4 × 20       [∵ Given a + b = 20 and ab = 4]

⇒ a3 + b3 = 20 × (202 – 12)

⇒ a3 + b3 = 20 × (400 – 12)

⇒ a3 + b3 = 20 × 388

⇒ a3 + b3 = 7760

∴ Value of a3 + b3 is 7760



Discussion

No Comment Found

Related InterviewSolutions