1.

If a+ b + c = 0, then the value of \(\frac{1}{{{b^2} + {c^2} - {a^2}}} + \frac{1}{{{c^2} + {a^2} - {b^2}}} + \frac{1}{{{a^2} + {b^2} - {c^2}}}\) is1. 32. 03. 14. None of the above

Answer» Correct Answer - Option 2 : 0

Given

a + b + c = 0

Formula used

(a + b)2 = a2 + b2 + 2ab

Calculation

a + b + c = 0

⇒ a + b = -c

On squaring both sides, we get

(a + b)2 = c2

⇒ a2 + b2 + 2ab = c2

⇒ a2 + b2 - c2 = -2ab      ______(1)

Similarly, b2 + c2 - a2 = -2bc      _____(2)

And c2 + a2 - b2 = -2ca      _____(3)

Then using equation (1), (2) and (3)

\(\Rightarrow \frac{1}{{{b^2} + {c^2} - {a^2}}} + \frac{1}{{{c^2} + {a^2} - {b^2}}} + \frac{1}{{{a^2} + {b^2} - {c^2}}} = {1 \over -2bc} + {1 \over -2ca} + {1 \over -2ab}\)

\(\Rightarrow {-1 \over 2}({1 \over bc} + {1 \over ca} + {1 \over ab})\)

\(\Rightarrow {-1 \over 2}({a + b + c \over abc}) = 0\)



Discussion

No Comment Found