InterviewSolution
Saved Bookmarks
| 1. |
If \(a + b = \frac 7 3\) and \(a^2 + b^2 = \frac {31} 9,\) find 27 (a3 + b3).1. 1542. 1563. 1524. 164 |
|
Answer» Correct Answer - Option 1 : 154 Given: a + b = 7/3 a2 + b2 = 31/9 Formula used: (a + b)2 = a2 + b2 + 2ab a3 + b3 = (a + b)( a2 + b2 – ab) Calculation: According to the question, ⇒ a + b = 7/3 Squaring both sides, ⇒ (a + b)2 = (7/3)2 ⇒ a2 + b2 + 2ab = 49/9 ⇒ 31/9 + 2ab = 49/9 ⇒ 2ab = 49/9 – 31/9 ⇒ 2ab = 18/9 ⇒ 2ab = 2 ⇒ ab = 1 According to the formula, ⇒ a3 + b3 = (a + b)( a2 + b2 – ab) Multiply 27 on both sides, ⇒ 27(a3 + b3) = 27(a + b)( a2 + b2 – ab) ⇒ 27(a3 + b3) = 27(7/3)( 31/9 – 1) ⇒ 27(a3 + b3) = 27(7/3)( 22/9) ⇒ 27(a3 + b3) = 22 × 7 ⇒ 27(a3 + b3) = 154 ∴ The value of 27(a3 + b3) is 154. |
|