1.

If A = \(\begin{bmatrix} 0 & i \\ i & 1 \\ \end{bmatrix}\) and B = \(\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ \end{bmatrix},\) find the value of |A| + |B|.

Answer»

Given that A = \(\begin{bmatrix} 0 & i \\ i & 1 \\ \end{bmatrix}\) and B = \(\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ \end{bmatrix},\) we have to find |A|+|B|

Then, |A| = \(\begin{bmatrix} 0 & i \\ i & 1 \\ \end{bmatrix}\) and |B| = \(\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ \end{bmatrix}\)

|A| = 0 × 1 - i × i

= -i2

=1 (Expanding along R1 and since i2 = -1)

|B| = 0 × 1 -1 × 1

= -1 (Expanding along R1)

|A| + |B| = 1 - 1

0



Discussion

No Comment Found