InterviewSolution
Saved Bookmarks
| 1. |
If A = \(\begin{bmatrix} 0 & i \\ i & 1 \\ \end{bmatrix}\) and B = \(\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ \end{bmatrix},\) find the value of |A| + |B|. |
|
Answer» Given that A = \(\begin{bmatrix} 0 & i \\ i & 1 \\ \end{bmatrix}\) and B = \(\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ \end{bmatrix},\) we have to find |A|+|B| Then, |A| = \(\begin{bmatrix} 0 & i \\ i & 1 \\ \end{bmatrix}\) and |B| = \(\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ \end{bmatrix}\) |A| = 0 × 1 - i × i = -i2 =1 (Expanding along R1 and since i2 = -1) |B| = 0 × 1 -1 × 1 = -1 (Expanding along R1) |A| + |B| = 1 - 1 0 |
|