1.

If a cot θ + b cosec θ = p and b cot θ + a cosec θ = q, then p2− q2 = A. a2− b2 B. b2− a2 C. a2 + b2 D. b − a

Answer»

Given: a cot θ + b cosec θ = p 

Squaring both sides, we get 

(a cot θ + b cosec θ)2 = p2

⇒ a2 cot2θ + b2 cosec2θ + 2ab cotθ cosecθ = p2 ……(i) 

and b cotθ + a cosecθ = q 

Squaring both sides, we get 

(b cot θ + a cosec θ)2 = q2 

⇒ b2 cot2θ + a2 cosec2θ + 2ab cotθ cosecθ = q2 ……(ii) 

To find: p2 – q

Subtracting (ii) from (i), we get 

a2 cot2θ + b2 cosec2θ + 2ab cotθ cosecθ – b2 cot2θ – a2 cosec2θ – 2ab cotθ cosecθ = p2 – q2 

⇒ P2 – q2 = a2 (cot2θ – cosec2θ) + b2 (cosec2θ – cot2θ) 

= a2 ( – 1) + b2 (1) [∵1 = cosec2θ – cot2θ] 

= b2 – a2



Discussion

No Comment Found