InterviewSolution
Saved Bookmarks
| 1. |
If cos θ = \(\frac{4}{5}\), find all other trigonometric ratios of angle θ. |
|
Answer» We have, cos θ = \(\frac{4}{5}\) And we know that, sin θ = √(1 – cos2 θ) ⇒ sin θ = √(1 – (\(\frac{4}{5}\))2) = √(1 – (\(\frac{16}{25}\))) = √[\(\frac{(25 \,–\, 16)}{25}\)] = √(\(\frac{9}{25}\)) = \(\frac{3}{5}\) ∴ sin θ =\(\frac{3}{5}\) Since, cosec θ = \(\frac{1}{sin\, θ }\) = \(\frac{1}{(3/5)}\) ⇒ cosec θ = \(\frac{5}{3}\) And, sec θ = \(\frac{1}{cos θ }\) = \(\frac{1}{(4/5)}\) ⇒ cosec θ = \(\frac{5}{4}\) Now, tan θ = \(\frac{sin θ}{cos θ }\) = \(\frac{(3/5)}{(4/5)}\) ⇒ tan θ = \(\frac{3}{4}\) And, cot θ = \(\frac{1}{tan θ}\) = \(\frac{1}{(3/4)}\) ⇒ cot θ = \(\frac{4}{3}\) |
|