1.

Prove:sin2 A cot2 A + cos2 A tan2 A = 1

Answer»

We know that, 

cot2 A = \(\frac{cos^2 A}{sin^2 A}\) and tan2 A = \(\frac{sin^2 A}{cos^2 A}\)

Substituting the above in L.H.S, we get 

L.H.S = sin2 A cot2 A + cos2 A tan2

= {sin2 A (\(\frac{cos^2 A}{sin^2 A}\))} + {cos2 A (\(\frac{sin^2 A}{cos^2 A}\))} 

= cos2 A + sin2 A = 1 [∵ sin2 θ + cos2 θ = 1] 

= R.H.S 

Hence Proved



Discussion

No Comment Found