InterviewSolution
Saved Bookmarks
| 1. |
Prove:sin2 A cot2 A + cos2 A tan2 A = 1 |
|
Answer» We know that, cot2 A = \(\frac{cos^2 A}{sin^2 A}\) and tan2 A = \(\frac{sin^2 A}{cos^2 A}\) Substituting the above in L.H.S, we get L.H.S = sin2 A cot2 A + cos2 A tan2 A = {sin2 A (\(\frac{cos^2 A}{sin^2 A}\))} + {cos2 A (\(\frac{sin^2 A}{cos^2 A}\))} = cos2 A + sin2 A = 1 [∵ sin2 θ + cos2 θ = 1] = R.H.S Hence Proved |
|