1.

In a right ∆ABC , right-angled at B, if tan A = 1 , then verify that 2 sin A·cos A = 1.

Answer»

Consider ΔABC to be a right angled triangle at B.

angle C = 90 degree

Given: tan A = 1 …(1)

tan A = 1 = BC/AB

AB = BC

Again, tan A = sin A/cos A

sin A = cos A …using (1)

By Pythagoras theorem:

AC2 = BC2 + AB2

AC2 = 2BC2

(AC/BC)2 = 2

Or AC/BC = √2

cosec A = √2

or sin A = 1/√2

and cos A = 1/√2

Now,

2 sin A cos A = 2(1/√2)( 1/√2)

= 2(1/2)

= 1

= RHS



Discussion

No Comment Found