1.

If sinθ + cosθ = x, prove that sin6θ + cos6θ = \(\frac{4-3(x^2-1)^2}{4}\)

Answer»

sinθ + cosθ = x

Squaring on both sides

(sinθ + cosθ)2 = x2

⇒ sin2θ + cos2θ + 2sinθcosθ = x2

∴ sinθcosθ = \(\frac{x^2-1}{2}\) ...(1)

We know sin2θ + cos2θ = 1

combining both since

(sin2θ + cos2θ)3 = (1)3

sin6θ + cos6θ + 3sinθCos2θ (sin2θ + cos2θ) = 1

⇒ sin6θ + cos6θ = 1- 3sin2θCos2θ

= 1- \(\frac{3(x^2-1)^2}{4}\) from -(1)

sin6θ + cos6θ = \(\frac{4-3(x^2-1)^2}{4}\) 

Hence Proved.



Discussion

No Comment Found