InterviewSolution
Saved Bookmarks
| 1. |
If sinθ + cosθ = x, prove that sin6θ + cos6θ = \(\frac{4-3(x^2-1)^2}{4}\) |
|
Answer» sinθ + cosθ = x Squaring on both sides (sinθ + cosθ)2 = x2 ⇒ sin2θ + cos2θ + 2sinθcosθ = x2 ∴ sinθcosθ = \(\frac{x^2-1}{2}\) ...(1) We know sin2θ + cos2θ = 1 combining both since (sin2θ + cos2θ)3 = (1)3 sin6θ + cos6θ + 3sinθCos2θ (sin2θ + cos2θ) = 1 ⇒ sin6θ + cos6θ = 1- 3sin2θCos2θ = 1- \(\frac{3(x^2-1)^2}{4}\) from -(1) sin6θ + cos6θ = \(\frac{4-3(x^2-1)^2}{4}\) Hence Proved. |
|