 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If A is a skew-symmetric matrix and `n`is an odd natural numbr, write whether `A^n`is symmetric or skew-symmetric or neither of the two. | 
| Answer» Here, `A` is a skew-symmetric matrix. `:. A^T = -A.` Now, We know, `(A^n)^T = (A^T)^n` `=>(A^n)^T = (-A)^n` As, `n` is an odd natural number, `:. (A^n)^T = -A^n` It means, `A^n` will be a skew-symmetric matrix for a odd number `n`, if `A` is a skew-symmetric matrix. | |