1.

If a = \(\sqrt {{{\left( {2013} \right)}^2} + 2013 + 2014} \), then the value of a is1. 10022. 10073. 20134. 2014

Answer» Correct Answer - Option 4 : 2014

Concept:

(a + b)2 = a2 + b2 + 2ab

Given:

a = \(\sqrt {{{\left( {2013} \right)}^2} + 2013 + 2014} \)

Calculation:

After rearranging the given question,

a = \(\sqrt {{{\left( {2013} \right)}^2} + 2013 + {(2013~+~1)}} \)

a = \(\sqrt {{{\left( {2013} \right)}^2} + 2 \times 2013 + 1} \)

a = \(\sqrt {{{\left( {2013} \right)}^2} +~1^2~+~ 2 \times 1 \times 2013} \)

a = \(\sqrt {{{\left( {2013~+~1} \right)}^2}} \)

a = 2014



Discussion

No Comment Found