InterviewSolution
| 1. |
If a2 + b2 + c2 = 2(6a – 8b + 12c) – 244 so find the value of a + b + c.1. 122. 143. 104. 8 |
|
Answer» Correct Answer - Option 3 : 10 Given: a2 + b2 + c2 = 2(6a – 8b + 12c) – 244 Formula used: (x + y)2 = x2 + y2 + 2xy (x – y)2 = x2 + y2 – 2xy Calculation: a2 + b2 + c2 = 2(6a – 8b + 12c) – 244 ⇒ a2 + b2 + c2 = 12a – 16b + 24c – 244 ⇒ a2 + b2 + c2 – 12a + 16b – 24c + 244 = 0 ⇒ a2 – 12a + b2 +16b + c2 – 24c + 244 = 0 ⇒ a2 – (2 × 6)a + b2 + (2 × 8)b + c2 – (2 × 12) c + 244 = 0 For perfect square add and subtract y2 ⇒ a2 – (2 × 6)a + 62 – 62 + b2 + (2 × 8)b + 82 – 64 + c2 – (2 × 12) c + 122 – 122 + 244 = 0 ⇒ (a – 6)2 + (b + 8)2 + (c – 12)2 – 244 + 244 = 0 ⇒ (a – 6)2 + (b + 8)2 + (c – 12)2 = 0 Here, a – 6 = 0 ⇒ a = 6 b + 8 = 0 ⇒ b = - 8 c – 12 = 0 ⇒ c = 12 So, a + b + c ⇒ 6 – 8 + 12 ⇒ 10 ∴ The value of a + b + c is 10 |
|