InterviewSolution
Saved Bookmarks
| 1. |
If alpha and beta are the zeroes of quadratic polynomial f(x)=5y^2-7y+1 |
| Answer» Given that, α and β are the zeroes of the quadratic polynomial.p(y) = 5y2 - 7y + 1Here, sum of the zeroes = α + β =\xa0{tex}\\frac{{ - ( -7 ) }}{ 5} = \\frac {{ 7 }}{ 5 }{/tex}and product of the roots = αβ =\xa0{tex}\\frac{{ 1 }}{ 5 }{/tex}So,{tex}\\frac{1}{\\alpha } + \\frac{1}{\\beta } = \\frac{{\\alpha + \\beta }}{{\\alpha \\beta }} = \\frac{{ 7 }}{ 5 }\\times\\frac{{ 5 }}{ 1 } = \\frac{7}{1} = 7 {/tex}Hence, required value of\xa0{tex}\\frac{{ 1 }}{ \\alpha } + \\frac{{ 1 }}{ \\beta }{/tex}\xa0is 7 | |