

InterviewSolution
Saved Bookmarks
1. |
If cos (x+y)=y sin x then find `dx/dy` |
Answer» cos(x+y)= y sin x Differentiate both sides with respect to x `-sin (x+y) d/dx(x+y)=y.cos x+sin x dy/dx` `rArr -sin (x+y)[1+dy/dx]=y.cos x+sin xdy/dx` `rArr -sin(x+y)-sinx.dx/dy` `rArr -sin (x+y)[1+dy/dx]=y.cos x+sin xdy/dx` `rArr -sin(x+y)-sinx.dy/dx=cos x+sin x. dy/dx` `rArr -dy/dx[sin (x+y)+sin x]=ycosx+sin (x+y)` `rArr dy/dx =-(y cos c +sin (x+y))/(sin (x+y)+sin x)` |
|