

InterviewSolution
Saved Bookmarks
1. |
If `cosy=xcos(a+y),`with `cosa!=+-1,`provethat`(dy)/(dx)=(cos^2(a+y))/(sina)dot` |
Answer» `cosy=x cos(a+y)` `impliesx=(cosy)/(cos(a+y))` Differentiate both sides w.r.t. y `(dy)/(dx)=(cos(a+y)(d)/(dx)cosy-cosy(d)/(dy)cos(a+y))/([cos(a+y)]^(2))` `=(-cos(a+y)siny+cosysin(a+y))/(cos^(2)(a+y))` `=(sin(a+y-y))/(cos^(2)(a+y))=(sina)/(cos^(2)(a+y))` `implies(dy)/(dx)=(cos^(2)(a+y))/(sina) " " `[Hence Proved. |
|