InterviewSolution
Saved Bookmarks
| 1. |
`If`D is the mid-point of the hypotenuse `A C`of a right triangle `A B C`, prove that `B D=1/2A C`.GIVEN : A `A B C`in which `/_B=90^0`and `D`is the mid-point of `A Cdot`TO PROVE : `B D=1/2A C`CONSTRUCTION Produce `B D`to `E`so that `B D=D Edot`Join `E Cdot` |
|
Answer» `In /_ADB and /_CDE` `AD=CD`(O is midpoint of AC) `BD=DE`(given) `/_ADB=/_CDE`(UDA) `/_ADB cong /_CDE(SAS)` `EC=AB and /_CED=/_ABP` `In /_ABC and /_ECB` `AB=EC`(proved above) `BC=BC`(common) `/_ABF=/_ECB`(90) `/_ABC cong /_ECB(SAS)` `AC=BE` `1/2AC=1/2BE` `1/2AC=BD`. |
|