1.

`If`D is the mid-point of the hypotenuse `A C`of a right triangle `A B C`, prove that `B D=1/2A C`.GIVEN : A `A B C`in which `/_B=90^0`and `D`is the mid-point of `A Cdot`TO PROVE : `B D=1/2A C`CONSTRUCTION Produce `B D`to `E`so that `B D=D Edot`Join `E Cdot`

Answer» `In /_ADB and /_CDE`
`AD=CD`(O is midpoint of AC)
`BD=DE`(given)
`/_ADB=/_CDE`(UDA)
`/_ADB cong /_CDE(SAS)`
`EC=AB and /_CED=/_ABP`
`In /_ABC and /_ECB`
`AB=EC`(proved above)
`BC=BC`(common)
`/_ABF=/_ECB`(90)
`/_ABC cong /_ECB(SAS)`
`AC=BE`
`1/2AC=1/2BE`
`1/2AC=BD`.


Discussion

No Comment Found

Related InterviewSolutions