1.

If \(f(x) = \begin{cases} \frac{sin(a + 1)x + sin\,x}{x}, & \quad x<0\\ \frac{1}{2}, & \quad x=0\\\frac{x^{3\sqrt{2}+1}}{2}, & \quad x>0 \end{cases}\) is continuous at x = 0, then the value of a isIf f(x) = {(sin(a + 1)x + sin x)/x, x<0, 1/2, x = 0, (x^3√2 + 1)/2, x > 0, then the value of a isA. \(\frac{1}{2}\)B. \(-\frac{1}{2}\)C. \(\frac{3}{2}\)D. \(-\frac{3}{2}\)

Answer»

Correct answer is

(D) \(-\frac{3}{2}\)



Discussion

No Comment Found

Related InterviewSolutions