1.

If f(x) = \(\begin{cases}x-[x]& \quad , x<2\\0 &\quad ;x =2\\3x-5 & \quad ,x>2 \end{cases}\)Find limx→2f(x) Is f(x) continuous at x = 2?

Answer»

1. To find limx→2f(x)
we have to find f(2) and f(2+)
f(2) = limx→2x−[x] = 2 -1 = 1,
f(2+) = limx→2 3x – 5 = 6 -5 = 1
f(2) = f(2+) = 1.
Therefore limx→2 f(x) = 1

2. Here, f(2) = 0 ≠ f(2) = f(2+) = 1.
Therefore discontinuity at x = 2.



Discussion

No Comment Found

Related InterviewSolutions