1.

If ` f.(x)= log((1+x)/(1-x))`, thenA. `f(x_(1))*f(x_(2))=f(x_(1)+x_(2))`B. `f(x+2)-2f(x+1)+f(x)=0`C. `f(x)+f(x+1)=f(x^(2)+x)`D. `f(x_(1))+f(x_(2)) = f ((x_(1)+x_(2))/(1+x_(1)x_(2)))`

Answer» Correct Answer - D
` f(x_(1)) + f(x_(2)) = log ((1+x_(1))/(1- x_(1))*(1+x_(2))/(1-x_(2)))`
`= log((1+x_(1)x_(2)+x_(1)+x_(2))/(1+x_(1)x_(2)-x_(1)-x_(2)))`
`= log((1+(x_(1)+x_(2))/(1+x_(1)x_(2)))/(1-(x_(1)+x_(2))/(1+x_(1)x_(2))))= f ((x_(1)+x_(2))/(1+x_(1)x_(2)))`


Discussion

No Comment Found