

InterviewSolution
Saved Bookmarks
1. |
If `f(x)=(tan(pi/4-x))/(cot2x)`for `x!=pi/4,`find the value which can beassigned to `f(x)`at `x=pi/4`so that the function `f(x)`becomes continuous every wherein `[0,pi/2]dot`A. 1B. `1//2`C. 2D. none of these |
Answer» Correct Answer - B For f(x) to be continous at `x=(pi)/(4)`, we must have `underset(x to pi//4)limf(x)=f((pi)/(4))` `underset(x to pi//4)lim (tan(pi//4-x))/(cot 2x)=f((pi)/(4))` `underset(x to pi//4)lim (tan(pi//4-x))/(tan (pi//2-2x))=f((pi)/(4))` `Rightarrow (1)/(2) underset(x to pi//4)lim ({tan (pi//4-x)/((pi//4-x))})/({(tan2(pi//4-x))/(2(pi//4-x))})=f((pi)/(4)) Rightarrow (1)/(2)=f((pi)/(4))` |
|