InterviewSolution
Saved Bookmarks
| 1. |
If `G_1` and `G_2` are two geometric means and A is the arithmetic mean inserted two numbers, then the value of `(G_1^2)/G_2+(G_2^2)/G_1` is: |
|
Answer» Let the given numbers be a and b. Then, `A=(a+b)/2 rArr a+b=2A` ...(i) And, `a, G_(1), G_(2), b` are in GP. `:. G_(1)/a=G_(2)/G_(1)=b/G_(2)` `rArr a=G_(1)^(2)/G_(2)` and `b=G_(2)^(2)/G_(1)` `rArr a+b=G_(1)^(2)/G_(2)+G_(2)^(2)/G_(1)` `rArr 2A=G_(1)^(2)/G_(1)+G_(2)^(2)/G_(1)` [using (i)]. Hence, `2A=G_(1)^(2)/G_(2)+G_(2)^(2)/G_(1)`. |
|