1.

If ` log_(a) 3 = 2 and log_(b) 8 = 3," then prove that "log_(a) b= log_(3) 4`.

Answer» If ` log_(a) 3 = 2`
` rArr 3 = a^(2)`
` rArr a = sqrt3`
If ` log_(b) 8 = 3`
` rArr 8 = b^(3)`
` rArr b = 2`
So, ` log_(a) b = log_(sqrt3) 2 = x(let)`
` rArr 2 = (sqrt3)^(x)`
` rArr 4 = 3^(x)`
` rArr x = log_(3) 4`


Discussion

No Comment Found