InterviewSolution
Saved Bookmarks
| 1. |
If m^th term |
| Answer» Let a and d be the first term and common difference respectively of the given A.P. Thenan = a + (n - 1)d{tex}\\frac { 1 } { n } ={/tex}\xa0mth term\xa0{tex}\\Rightarrow \\frac { 1 } { n } {/tex}= a + ( m - 1 ) d\xa0...(i){tex}\\frac { 1 } { m }{/tex}= nth term{tex}\\Rightarrow \\frac { 1 } { m } {/tex}= a + ( n - 1 ) d\xa0...(ii)On subtracting equation (ii) from equation (i), we get{tex}\\frac { 1 } { n } - \\frac { 1 } { m } = {/tex} [a+ (m-1) d] -[ a+ (n -1)d]= a + md - d - a - nd + d{tex}= ( m - n ) d{/tex}{tex} \\Rightarrow \\frac { m - n } { m n } = ( m - n ) d {/tex}{tex}\\Rightarrow d = \\frac { 1 } { m n }{/tex}Putting d = {tex}\\frac { 1 } { m n }{/tex}\xa0in equation (i), we get{tex}\\frac { 1 } { n } = a + \\frac { ( m - 1 ) } { m n } {/tex}{tex}\\Rightarrow \\frac { 1 } { n } = a + \\frac { 1 } { n } - \\frac { 1 } { m n } {/tex}{tex}\\Rightarrow a = \\frac { 1 } { m n }{/tex}{tex}\\therefore{/tex}\xa0(mn)th term = a + (mn - 1) d=\xa0{tex}\\frac { 1 } { m n } + ( m n - 1 ) \\frac { 1 } { m n } {/tex}{tex}\\left[ \\because a = \\frac { 1 } { m n } = d \\right]{/tex}= {tex}\\frac { 1 } { m n } + \\frac { mn } { m n } - \\frac { 1 } { m n }{/tex}= 1 | |