InterviewSolution
| 1. |
If N = 0.738738738738... and M = 0.531531531531....., then what is the value of (1/N) + (1/M)?1. 2448/111002. 15651/48383. 11100/24194. 1897/3162 |
|
Answer» Correct Answer - Option 2 : 15651/4838 Given: N = 0.738738738... M = 0.531531531... Concept: Non-terminating repeating decimal or recurring decimal:- A decimal fraction in which a figure or group of figures is repeated indefinitely, as in 0.7777 or as in 1.445445445. Ex- 0.333... = 0.3̅ = 3/9 Calculation: N = 0.738738738... = \(0.\overline {738} = \frac{{738}}{{999}}\) M = 0.531531531... = \(0.\overline {531} = \frac{{531}}{{999}}\) ⇒ N = 738/999 = 82/111 ⇒ M = 531/999 = 59/111 Now, (1/N) + (1/M) = (111/82) + (111/59) \( ⇒ \frac{{111\: ×\: 59\:+ \:111\: × \:82}}{{82\; ×\: 59}}\) \(⇒ \frac{{111\left( {59\; + \;82} \right)}}{{82\; ×\: 59}} = \;\frac{{111\; × \;141}}{{82\; × \:59}}\) ⇒ 15651/4838 Shortcut: Given: N = 0.738738738... M = 0.531531531... Calculation: N = 0.738738738... = \(0.\overline {738} = \frac{{738}}{{999}}\) M = 0.531531531... = \(0.\overline {531} = \frac{{531}}{{999}}\) ⇒ N = 738/999 = 82/111 ⇒ M = 531/999 = 59/111 (1/N) + (1/M) = (111/82) + (111/59) unit digit of dominator = 2 and 9 = 2 × 9 = 18 ∴ we check option which unit digit of dominator is 8, that is my answer. In option only option b which unit digit is 8 so that is my answer. |
|