InterviewSolution
Saved Bookmarks
| 1. |
If one of the roots of equation x2 + mx + n = 0 is the square of the other, then which of the following condition will be true? 1. m3 + n2 + n = -3mn2. m3 + n2 + n = 3mn3. n3 + m2 + m = 3mn4. n3 + m2 + m = -3mn |
|
Answer» Correct Answer - Option 2 : m3 + n2 + n = 3mn Given: One of the roots of equation x2 + mx + n = 0 is the square of the other. Formula Used: If ax2 + bx + c = 0, then Sum of the roots = -(b/a) Product of the roots = (c/a) (a + b)3 = a3 + b3 + 3 × a × b × (a + b) Calculation: Let α and α2 be the roots of equation x2 + mx + n = 0 Product of the roots = (c/a) ⇒ α × α2 = n ⇒ α3 = n ⇒ α = (n)1/3 ---- (1) Sum of the roots = -(b/a) ⇒ α + α2 = -m ⇒ α + α2 = -m ---- (2) Put the value of eq. (1) in the eq. (2) ⇒ (n)1/3 + (n)2/3 = -m On cubing both the sides, ⇒ n + n2 + 3 × n1/3 × n2/3 × (n1/3 + n2/3) = (-m)3 ⇒ n + n2 + 3 × n × (-m) = -m3 ⇒ n + n2 + m3 = 3mn ∴ The condition n + n2 + m3 = 3mn will be true. |
|