1.

If `plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]|` then `t=`

Answer» Since given relation is an identity it is true for all real values of `lambda`
` |{:(0,,-1,,3),(1 ,,0,,-4),(-3,,4,,0):}|`
which is skew- symmetric determinant.
So t=0


Discussion

No Comment Found