1.

If sec theta +tan theta =m; & sec theta× tan theta =n; find the value of √mn

Answer» Given: (sec{tex}\\theta{/tex}\xa0+ tan{tex}\\theta{/tex}) = m and (sec{tex}\\theta{/tex}\xa0- tan{tex}\\theta{/tex}) = n,LHS = mn = (sec{tex}\\theta{/tex}\xa0+ tan{tex}\\theta{/tex})(sec{tex}\\theta{/tex}\xa0- tan{tex}\\theta{/tex})= sec2{tex}\\theta{/tex}\xa0- tan2{tex}\\theta{/tex}\xa0= 1 = RHS [{tex}\\because{/tex}\xa0sec2{tex}\\theta{/tex}\xa0- tan2{tex}\\theta{/tex}\xa0= 1]{tex}\\therefore \\sqrt {mn} = 1{/tex}


Discussion

No Comment Found