InterviewSolution
Saved Bookmarks
| 1. |
If sec2θ (1 + sin θ) (1 − sin θ) = k, then find the value of k. |
|
Answer» Given: sec2θ (1 + sin θ) (1 − sin θ) = k To find: k Consider sec2θ (1 + sin θ) (1 − sin θ) ∵ (a – b) (a + b) = a2 – b2 ∴ sec2θ (1 + sin θ) (1 − sin θ) = sec2θ(1 – sin2θ) Now, as sin2θ + cos2θ = 1 ⇒ cos2θ = 1 – sin2θ ⇒ sec2θ(1 + sin θ)(1 − sin θ) = sec2θ(1 – sin2θ) = sec2θ cos2θ Now, ∵ secθ = \(\frac{1}{cosθ}\) ⇒ sec2θ = \(\frac{1}{cos^2θ}\) ⇒ sec2θ(1 + sin θ)(1 − sin θ) = sec2θ(1 – sin2θ) = sec2θ cos2θ = \(\frac{1}{cos^2θ }\)cos2θ = 1 ⇒ k = 1 |
|