1.

If `(sin^(-1)x)^2+(cos^(-1)x)^2=(17pi^2)/(36)`, find `xdot`

Answer» `(17 pi^2)/36 = (sin^-1 x + cos^-1 x)^2 - 2 sin^-1 x cos^-1 x`
`(17 pi^2)/36 = pi^2/4 - 2sin^-1 x[ pi/2 - sin^-1 x]`
`2(sin^-1 x)^2 - pi(sin^-1 x) + pi^2/4- 17 pi^2/36= 0`
`2(sin^-1 x)^2 - pi(sin^-1 x) - (8pi^2)/36 = 0`
`(sin^-1 x)^2 - pi/2 (sin^-1 x) - pi^2 / 9= 0`
`sin^-1 x = (pi/2 +- sqrt(pi^2/4 + (4 pi^2)/9))/(2(1))`
`sin^-1 x = (pi/2 +- sqrt((25 pi^2)/(36)))/2`
now, `(pi/2 + 5pi/6)/2 or (pi/2 - 5 pi/6)/2`
`8pi/24 = pi/3or -pi/3`
`sin^-1 x = pi/3`
`x = sqrt3/2`
and `sin^-1 x = -pi/6`
`x= -1/2`
Answer


Discussion

No Comment Found