1.

Prove that:`(i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2`,

Answer» `cos 2 theta = 2 cos^2 theta - 1`
`1 + cos 2 theta = 2 cos^2 theta`
so, `1 + cos x = 2cos^2 (x/2)`
Also `cos 2 theta = 1- 2sin^2 theta`
`1- cos 2 theta = 2 sin^2 theta`
so, `1 - cosx = 2sin^2(x/2)`
now, putting it in the equation given
`tan^-1{(sqrt(2cos^2(x/2)) - sqrt(2sin^2(x/2)))/(sqrt(2cos^2(x/2)) - sqrt(2sin^2(x/2)))}`
`= tan^-1{ (sqrt2 cos(x/2) + sqrt2 sin(x/2))/(sqrt2 cos(x/2) - sqrt2sin(x/2))}`
`= tan^-1{(1+tan(x/2))/(1- tan(x/2))}`
`= tan^-1 {(tan (pi/2) + tan(x/2))/(1 - tan(pi/4) tan(x/2))}`
`= tan^-1{tan(pi/4 + x/2)}`
`= pi/4 + x/2 ` = RHS
hence proved


Discussion

No Comment Found