1.

If Sin =a^2-b^2\\a^2+b^2 , find the value of other five trigonometric ratios

Answer» In ΔABC, Let ∠ABC be θSin θ = (a2 - b2) / (a2 + b2)⇒ AB = (a2 - b2)⇒ AC = (a2 + b2)⇒ BC = √[(a2 + b2)2 - (a2 - b2)2] [According to Pythagoras theorem]⇒ BC = √(4a2b2)⇒ BC = 2abCos θ = 2ab / (a2 + b2)Tan θ = (a2 - b2) / 2ab.Cosec θ, Sec θ and Cot θ are the reciprocals of Sin θ, Cos θ, Tan θ respectively.
In ΔABC, Let ∠ABC be\xa0θSin θ = (a2\xa0- b2) / (a2\xa0+ b2)⇒ AB = (a2\xa0- b2)⇒ AC = (a2\xa0+ b2)⇒ BC = √[(a2\xa0+ b2)2\xa0- (a2\xa0- b2)2] [According to Pythagoras theorem]⇒ BC = √(4a2b2)⇒ BC = 2abCos θ = 2ab / (a2\xa0+ b2)Tan θ = (a2\xa0- b2) / 2ab.Cosec θ, Sec θ and Cot θ are the reciprocals of Sin θ, Cos θ, Tan θ respectively.


Discussion

No Comment Found