Saved Bookmarks
| 1. |
If sin A equal cos A then find the value of 2 tan A plus cos square A |
| Answer» {tex}SinA=CosA{/tex}(given){tex}\\implies{SinA\\over CosA}=1{/tex}{tex}\\implies TanA=1{/tex}but\xa0{tex}TanA={perpendicular\\over Base}{/tex}so perpendicular=1and Base=1Hypotaneous={tex}\\sqrt {1^2+1^2} =\\sqrt 2{/tex}we required value of\xa0{tex}2TanA+Cos^2A{/tex}{tex}\\implies 2\\times 1+{1\\over \\sqrt2}{/tex}{tex}\\implies { {2\\sqrt 2+1}\\over \\sqrt 2}{/tex}by rationalization{tex}\\implies {{4+\\sqrt 2}\\over2}{/tex} | |