1.

If sin theta +tan theta =m and sin theta - tan theta =n. Prove that m^2 - n ^2 =4 under root "mn"

Answer» Thank you for answers
lHS=(sin+tan)^2-(sin^2-tan^2). A. (Sin^2+tan^2+2sin*tan)-(sin^2+tan^2-2sin*tan). B. Sin^2+tan^2+2sin*tan-sin^2-tan^2+2sin*tan. C. 4sin*tan D. RHS=4√(sin+tan)(sin-tan). A. =4√sin^2-tan^2. S. =4√sin^2-sin^2/cos^2. R. =4√sin^2*cos^2-sin^2. A. ------------------------------. F. Cos^2. A. =4√sin^2(cos^2-1). T. ---------------------. =4tan*sin. I. Cos^2
(TanA +sinA) ^2-2ho)(tanA-sinA)^2=√(tanA+sinA)(tanA-sinA)


Discussion

No Comment Found