InterviewSolution
Saved Bookmarks
| 1. |
If sin2θcos2θ(1 + tan2θ)(1 + cot2θ) = λ, then find the value of λ. |
|
Answer» Given: sin2θ cos2θ (1 + tan2θ)(1 + cot2θ) = λ To find: λ We know that 1 + tan2θ = sec2θ And 1 + cot2θ = cosec2θ ⇒ sin2θ cos2θ (1 + tan2θ) (1 + cot2θ) = sin2θ cos2θ sec2θ cosec2θ Now, ∵ cosecθ = \(\frac{1}{sinθ}\) ⇒ cosec2θ = \(\frac{1}{sin^2θ}\) And ∵ secθ = \(\frac{1}{cosθ}\) ⇒ sec2θ = \(\frac{1}{cos^2θ}\) ⇒ sin2θ cos2θ (1 + tan2θ) (1 + cot2θ) = sin2θ cos2θ sec2θ cosec2θ = sin2θ cos2θ \(\frac{1}{cos^2θ}\)\(\frac{1}{sin^2θ}\)= 1 ⇒ λ = 1 |
|