1.

If sin2θcos2θ(1 + tan2θ)(1 + cot2θ) = λ, then find the value of λ.

Answer»

Given: sin2θ cos2θ (1 + tan2θ)(1 + cot2θ) = λ 

To find: λ 

We know that 1 + tan2θ = sec2θ 

And 1 + cot2θ = cosec2θ 

⇒ sin2θ cos2θ (1 + tan2θ) (1 + cot2θ) 

= sin2θ cos2θ sec2θ cosec2θ

Now,

∵ cosecθ = \(\frac{1}{sinθ}\)

⇒ cosec2θ = \(\frac{1}{sin^2θ}\)

And ∵ secθ = \(\frac{1}{cosθ}\)

⇒ sec2θ = \(\frac{1}{cos^2θ}\)

⇒ sin2θ cos2θ (1 + tan2θ) (1 + cot2θ)

= sin2θ cos2θ sec2θ cosec2θ

= sin2θ cos2θ \(\frac{1}{cos^2θ}\)\(\frac{1}{sin^2θ}\)= 1

⇒ λ = 1



Discussion

No Comment Found