1.

If sinA +sin2A =1 ,prove that cos2A +cos4A =1

Answer» Given that sinA + sin2A =1Then, sin A= 1 - sin2ATherefore, sin A = cos2A (since [1 - sin2A] is Cos2A by identity)Now substitute this in cos2A + cos4A = 1Instead of cos2A substitute (1-sin2A)Equating it, 1 - sin2A + cos4A = 1Now instead of sin A substitute cos2A , then sin2A = cos4A1- cos4A + Cos4A = 1. Cos4A gets striked outThus 1=1.Hence proved....


Discussion

No Comment Found