1.

If sinΦ+cosΦ=p and secΦ+cosecΦ=q,then prove that q(p×p -1)=2p

Answer» (sin¢ + cos¢ )^2 = p^2SinA ^2+ cos A^2+2. sinA.cosA=p^21+2.sinA.cosA=p^22.sinAcosA= p2-1sinAcosA=p^2-1/2We write secA+ cosecA = q1/cosA+1/sinA=qsinA+cosA/sinA.cosA= qp/p2-1/2=q2p=q(p^2-1)
Haa sahi h
Question shi hna kuch mistake to nhi h na


Discussion

No Comment Found