InterviewSolution
Saved Bookmarks
| 1. |
If `sintheta + 2 costheta=1`,then prove that `2sintheta-costheta=2`. |
|
Answer» Given, `sintheta+2costheta=1` On squaring both sides, we get `(sintheta+2costheta)^(2)=1` `sin^(2)theta+4cos^(2)theta+4sintheta.costheta=1` `rArr (1-cos^(2)theta) + 4(1-sin^(2)theta)+4sintheta.costheta=1` `[therefore sin^(2)theta+ cos^(2)theta=1]` `rArr 4sin^(2)theta + cos^(2)theta-4sintheta. costheta=4` `rArr (2sintheta-costheta)^(2)=4` `[therefore a^(2)+b^(2)-2ab=(a-b)^(2)]` `rArr 2sintheta-costheta=2` Hence proved. |
|