Saved Bookmarks
| 1. |
If ß and alfa are zeroes of a pllynomial x2_4x+3 verify the relation between zeroes and coefficient? |
| Answer» {tex}\\alpha{/tex}\xa0and β are the zeroesThe given quadratic equation is x2—4x+3Here, a=1, b=—4, c=3By coefficient,Sum of zeroes=\xa0{tex}—b\\over a{/tex}{tex}\\alpha+β={/tex}{tex}—(-4)\\over1{/tex}=4Product of zeroes =\xa0{tex}c\\over a{/tex}{tex}\\alphaβ={3\\over1}{/tex}=3Now, x2—4x+3=0x2—3x—x+3=0x(x—3)—1(x—3)=0(x—1)(x—3)=0Either , x—1=0 or, x—3=0 The zeroes are x=1 or 3Sum of zeroes = 1+3=4Product of zeroes = 1{tex}\\times{/tex}3=3Proved | |