Saved Bookmarks
| 1. |
If tan thita + 1/tan thita= 2, find the value of tan square thita + 1/tan square thita |
| Answer» {tex}given \\; \\; \\tan \\theta + {1\\over \\tan \\theta}= 2{/tex}to find{tex}\\tan^2 \\theta + {1\\over \\tan^2 \\theta}{/tex}Solution: {tex} \\tan \\theta + {1\\over \\tan \\theta}= 2{/tex}Squaring both side{tex}\\implies( \\tan \\theta+ {1\\over \\tan \\theta})^2= (2)^2{/tex}{tex}\\implies \\tan^2 \\theta + {1\\over \\tan^2 \\theta}+2\\tan \\theta\\times {1\\over \\tan \\theta}=4{/tex}{tex}\\implies \\tan^2 \\theta + {1\\over \\tan^2 \\theta}+2=4{/tex}{tex}\\implies \\tan^2 \\theta + {1\\over \\tan^2 \\theta}=4-2{/tex}{tex}\\implies \\tan^2 \\theta + {1\\over \\tan^2 \\theta}=2{/tex}\xa0\xa0 | |