Saved Bookmarks
| 1. |
If the equation(1+m2)x2+2mcx+(c2-a2)=0 has equal roots ,prove that c2=a2(1+m2) |
|
Answer» Given- (1+m2)x2+2mcx+(c2-a2)=0If this equation has equal roots then B2-4ac = 0(2mc)2-4(1+m2)(c2-a2)=04m2c2-4(1+m2)(c2-a2)=04m2c2 = 4(1+m2)(c2-a2)m2c2 = (1+m2)(c2-a2)m2c2 = c2 - a2 + m2c2 - m2a2 0 = c2 -a2 - m2a2 m2a2 = c2-a2 m2a2 + a2 = c2 (1+m2)a2 = c2 HENCE PROVED ???? Not knowing |
|