1.

If the equation `2^x+4^y=2^y`is solved for `y`in terms of `x`where `x

Answer» Correct Answer - B
`2^(2y) - 2^(y) + 2^(x) (1-2)^(x)) = 0`
Putting ` 2^(y) = t`, we get
` t^(2) - t+2^(x) (1-2^(x)) = 0 ," where "t_(1) = 2^(y_(1)) and t_(2) = 2^(y_(2))`
` t_(1)t_(2)=2^(x)(1-2^(x))`
` 2^(y_(1)+y_(2))=2^(x) (1-2^(x))`
` y_(1)+y_(2) = x + log _(2) (1-2^(x))`


Discussion

No Comment Found