

InterviewSolution
Saved Bookmarks
1. |
If the lines `a x+y+1=0,x+b y+1=0a n dx+y+c=0(a ,b ,c`beingdistinct and different from `1)`areconcurrent, then prove that `1/(1-a)+1/(1-b)+1/(1-c)=1.` |
Answer» if the given lines are concurrent then `|{:(a,,1,,1),(1,,b,,1),(1,,1,,c):}|=0` `|{:(a,,1-a,,1-a),(1,,b-1,,0),(1,,0,,c-a):}|=0` [Applying` C_(2) to C_(2) -C_(1) " and "C_(3) to C_(3)-C_(1)]` `a(b-1)(c-1) -(c-1)(1-a)-(b-1)(1-a)=0` `(a)/(1-a)+(1)/(1-b)+(1)/(1-c)=0` `"(Dividing by " (1-a)(1-b)(1-c))` `(1)/(1-a)+(1)/(1-b)+(1)/(1-c)=1` |
|