1.

If the product of zeros of the polynomial ax2-6x-6 is 4, then the value of a is ----------

Answer» According to the question,we have to find the value of a such that the product of the zeros of the polynomial (ax2\xa0-\xa06x -\xa06) is 4.Let {tex} \\alpha{/tex}\xa0and {tex}\\beta{/tex}\xa0be the zeros of the polynomial (ax2\xa0- 6x - 6)Then,\xa0{tex}\\alpha{/tex}{tex} \\beta{/tex}\xa0=\xa0{tex} \\frac { \\text { constant term } } { \\text { coefficient of } x ^ { 2 } } = \\frac { - 6 } { a }{/tex}But,\xa0{tex} \\alpha{/tex}{tex} \\beta{/tex}\xa0= 4 (given).{tex} \\therefore \\quad \\frac { - 6 } { a } = 4 \\Rightarrow 4 a = - 6 \\Rightarrow a = \\frac { - 6 } { 4 } = \\frac { - 3 } { 2 }{/tex}Hence, a =\xa0{tex} \\frac { - 3 } { 2 }{/tex}


Discussion

No Comment Found