1.

If the roots of quadratic equation (b-c)x2+(c-a)x+(a-b) are equal, prove that 2b=a+c

Answer» (b-c)x²+(c-a)x+(a-b)=0Comparing with quadratic equationAx²+Bx+C=0A=(b-c),B=c-a,C=a-bDiscriminate when roots are equalD=B²-4AC=0D=(c-a)²−4(b-c)(a-b)=0D=(c²+a²−2ac)-4(ba-ac-b²+bc)=0D=c²+a²−2ac-4ab+4ac+4b²-4bc=0c²+a²+2ac-4b(a+c)+4b²=0(a+c)²-4b(a+c)+4b²=0[(a+c)-2b]²=0a+c=2b\xa0


Discussion

No Comment Found