Saved Bookmarks
| 1. |
if the sum of first 14 terms of an AP is 1050 and its first term is 10, find the 20th term. |
| Answer» Given, a = 10, and S14\xa0= 1050Let the common difference of the A.P. be d{tex}\\therefore \\quad S _ { n } = \\frac { n } { 2 } [ 2 a + ( n - 1 ) d ]{/tex}{tex}\\therefore \\quad S _ { 14 } = \\frac { 14 } { 2 } [ 2 \\times 10 + ( 14 - 1 ) d ]{/tex}\xa01050 = {tex}7 (20 + 13 d ){/tex}{tex}20 + 13d{/tex} =\xa0{tex}\\frac{1050}{7}{/tex}\xa0{tex}20 + 13d{/tex} = 150{tex}13d{/tex} = 150 - 20{tex}13d{/tex} = 130{tex}d{/tex} =\xa0{tex}\\frac{130}{13}{/tex}\xa0= 10{tex}a_{20} = a + (n - 1)d{/tex}= 10 + (20 - 1) 10= 10 + 19\xa0{tex}\\times{/tex}\xa010= 10 + 190= 200Hence, a20\xa0= 200 | |