InterviewSolution
Saved Bookmarks
| 1. |
If (x +(1/x)) = 2, then find the value of (x5 + x4 + x3 + x2 + x + 1) |
|
Answer» Correct Answer - Option 4 : 6 Given (x +(1/x)) = 2, (x5 + x4 + x3 + x2 + x + 1) = ? Calculation ⇒ (x +(1/x)) = 2 ⇒ (x2 + 1)/x = 2 ⇒ x2 + 1 = 2x ⇒ x2 - 2x + 12 = 0 ⇒ (x - 1)2 = 0 ⇒ x = 1 Now, Put the value in the given equation ⇒ (x5 + x4 + x3 + x2 + x + 1) = (15 + 14 + 13 + 12 + 1 + 1) ⇒ (x5 + x4 + x3 + x2 + x + 1) = 6 ∴ (x5 + x4 + x3 + x2 + x + 1) = 6 Alternate method (x +(1/x)) = 2 In this type of question in which x +(1/x)) = 2, You can directly put value of x = 1 When you put x = 1 ⇒ x +(1/x)) = 2 i.e R.H.S = L.HS So, put the value of x = 1 in the equation ⇒ (x5 + x4 + x3 + x2 + x + 1) = 6 ∴ (x5 + x4 + x3 + x2 + x + 1) = 6 |
|