InterviewSolution
Saved Bookmarks
| 1. |
If \({x^2} - 3\sqrt 2 x + 1 = 0\), then the value of \({x^3} + \frac{1}{{{x^3}}}\) is:1. \(45\sqrt 2 \)2. \(54\sqrt 2 \)3. \(24\sqrt 6 \)4. \(36\sqrt 6\) |
|
Answer» Correct Answer - Option 1 : \(45\sqrt 2 \) Given: \({x^2} - 3√ 2 x + 1 = 0\) Formula used: (a + b)3 = a3 + b3 + 3ab(a + b) Calculation: \({x^2} - 3√ 2 x + 1 = 0\) ⇒ x(x – 3√2 + 1/x) = 0 ⇒ (x – 3√2 + 1/x) = 0 ⇒ x + 1/x = 3√2 ----(1) Cubing on both side ⇒ (x + 1/x)3 = (3√2)3 (a + b)3 = a3 + b3 + 3ab(a + b) ⇒ x3 + 1/x3 + 3(x + 1/x) = 54√2 ⇒ x3 + 1/x3 + 3 × 3√2 = 54√2 (from equation 1) ⇒ x3 + 1/x3 = 54√2 – 9√2 ⇒ x3 + 1/x3 = 45√2 ∴ The value of x3 + 1/x3 is 45√2 |
|