InterviewSolution
Saved Bookmarks
| 1. |
If \(x^2 + \frac 1 {x^2} = 7,\) then the value of \(x^3 + \frac 1 {x^3}\) where x > 0 is equal to:1. 162. 183. 124. 15 |
|
Answer» Correct Answer - Option 2 : 18 Given: x2 + 1/x2 = 7 Concept: (a + b)2 = a2 + b2 + 2ab (a + b)3 = a3 + b3 + 3ab(a + b) If b = 1/a (a + 1/a)2 = a2 + 1/a2 + 2 (a + 1/a)3 = a3 + 1/a3 + 3(a + 1/a) Calculation: ⇒ (x + 1/x)2 = x2 + 1/x2 + 2 ⇒ (x + 1/x)2 = 7 + 2 ⇒ x + 1/x = √9 ⇒ x + 1/x = 3 Now, ⇒ (x + 1/x)3 = x3 + 1/x3 + 3(x + 1/x) ⇒ 33 = x3 + 1/x3 + 3 × 3 ⇒ x3 + 1/x3 = 27 - 9 ⇒ x3 + 1/x3 = 18 ∴ The required value is 18. |
|