InterviewSolution
Saved Bookmarks
| 1. |
If \({x^2} - \sqrt 3 x + 1 = 0\), then \(\left( {{x^3} + {x^{ - 3}}} \right)\) is equal to: |
|
Answer» Correct Answer - Option 1 : 0 Given: \({x^2} - √ 3 x + 1 = 0\) Concept used: Algebra Calculation: Divide the given equation by x ⇒ \(x + \frac{1}{x} = √ 3 \) We need to find (x + 1/x)3 Let (x + 1/x) = k = √3 \({\left( {x + \frac{1}{x}} \right)^3} = {x^3} + \frac{1}{{{x^3}}} + 3k\) \({x^3} + \frac{1}{{{x^3}}} = {\left( {x + \frac{1}{x}} \right)^3} - 3k\) \({x^3} + \frac{1}{{{x^3}}} = {\left( {\sqrt 3 } \right)^3} - 3k\) \({x^3} + \frac{1}{{{x^3}}} = 3\sqrt 3 - 3\sqrt 3 \) ∴ \({x^3} + \frac{1}{{{x^3}}} = 0\) |
|